II B. TECH I SEMESTER REGULAR EXAMINATIONS, MARCH - 2022 DIGITAL CIRCUITS AND LOGIC DESIGN

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 70

Note: Answer **ONE** question from each unit (5 × 14 = 70 Marks)

UNIT-I

1. a) Identify $(524)_{10}$ in the following code:

[6M]

(i) Binary (ii) Hexadecimal (iii) BCD

b) Summarize Boolean laws and De-Morgan's theorem with [8M] suitable examples.

(OR)

- 2. a) Calculate the Boolean expression for a two input Ex-OR gate to [7M] realize with the only two input NAND gates and draw the circuit.
 - b) A 7 bit Hamming code is received as 1110101.Predict is there [7M] any error? If yes, locate the position of the error bit. Parity checks are created by odd parity.

UNIT-II

- 3. a) Illustrate the Boolean function $F = A(\overline{A} + B)(\overline{A} + B + \overline{C})$ into max [7M] terms and min terms
 - b) Apply the K-map method to reduce following Boolean function [7M] with the don't conditions:

$$F(A, B, C, D)=\Sigma(0, 6, 8, 13, 14); d(A, B, C, D)=\Sigma(2, 4,10)$$

(OR)

- 4. a) Modify the expression $F = (B + BC)(B + \overline{B}C)(B + D)$ into minimum [7M] literals.
 - b) Apply the tabular method to reduce following Boolean function [7M] $F=\Sigma m(0,2,4,6,7,8,10,12,13,15)+d(1,9,14)$.

UNIT-III

- 5. a) Design a BCD adder using 4-bit parallel binary adder and logic [7M] gates.
 - b) Realize a 3 to 8 decoder using 2 to 4 decoder and other [7M] required gates.

(OR)

6. a) Demonstrate the 4 : 2 priority encoder with a neat logic [7M] diagram.

b) Implement the following Boolean functions using PLA. [7M]

 $A(x,y,z) = \sum m(0,1,2,4,6)$

 $B(x,y,z) = \sum m(0,2,6,7)$

 $C(x,y,z) = \sum m(3,6)$

UNIT-IV

- 7. a) Describe the drawback of JK flip-flop? Discuss how it is [7M] eliminated in Master Slave flip-flop?
 - b) Build MOD 6 Ripple counter using JK flip-flop and explain the [7M] operation.

(OR)

- 8. a) Outline the working of flip-flop? How it can be used in [7M] sequential circuit and explain in detail.
 - b) Build the circuit diagram of Johnson counter using D-flip-flops [7M] and explain its operation with the help of bit pattern.

UNIT-V

- 9. a) Demonstrate the logic diagram of Mealy and Moore models and [7M] also explain their operation with examples.
 - b) Reduce the following state table to minimum number of states [7M] and then draw the state diagram.

PS	NS,Z	
	X=0	X=1
A	F,0	В,0
В	D,0	C,0
С	F,0	E,0
D	G,1	A,0
E	D,0	C,0
F	F,1	В,1
G	G,0	H,1
Н	G,1	A,0
(OR)		

- 10. a) Discuss the capabilities and limitations of finite state [4M] machines?
 - b) Draw the state diagram of a sequence detector which can [10M] detect 101 using Melay and Moore models.

* * * * *